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SUMMARY

The equation of motion is derived for the angular rotation about the pitch

axis of a space vehicle that is thrusting while partly filled with a liquid

fuel that constitutes a large percentage of its mass. The forces due to thrust

and rotation are of a magnitude equal to the capillary forces of the fluid and

much greater than the Coriolis force. These forces are idealized to lie paral-

lel to a longitudinal axis of the fluid tank. Changes in the angular rotation

are generated by an impulsive torque applied to the vehicle. The fluid is con-

sidered to be irrotational_ incompressible 3 inviscid_ and contained in a rec-

tangular tank.

The resulting angular rotation of the vehicle and fluid system consists of

the sum of a constant or average rotation and a cosine variation with time due

to the motion of the fluid within the tank. The frequency of the variation is

the slosh frequency of the free surface of the fluid. The slosh frequency is

presented as a function of the inertial loading due to thrust_ rotation_ the

amount of fluid in the tank_ and the fluid-surface tension and density. The

limit of thrust reversal for stability of the free-surface motion is established

from the slosh frequency. The ability to minimize the sloshing effect by proper

adjustment of the impulse magnitude and time of application is discussed and an

example is given. The response per unit impulse of a vehicle is presented for

different loading conditions and fuel available for the change in angular

velocity at the time of impulse, the average angular rate_ the amplitude of the

slosh variation_ and the ratio of slosh variation to average angular rate.

INTRODUCTION

Vehicles operating in space can require maneuvers such as maintaining a

fixed attitude or rendezvous_ where associated inertial forces on the fluid are

equal in magnitude to the capillary forces. As these space vehicles become

larger and more complex_ it is expected that they will be carrying a large per-

centage of their total mass in liquid fuel. Thus_ as the liquid fuel is used,

a free surface is created that is put in motion by the changes in the



gravitational field due to changes in thrust level or angular rotation in an
orientation maneuver. The motion of the fluid would appear to cause a varia-
tion in the motion of the vehicle at a time when it is desired that the motion
be as constant as possible. Somework has been done on the problem of fuel
sloshing in an environment where the inertial forces are muchgreater than the
capillary forces of the fluid. (For example, see ref. i.) In addition, in the
area where the inertial forces are equal to the capillary forces 3 the frequency
of surface oscillation or slosh frequency has been determined. (See refs. 2
to 5.) However, none of the aforementioned work has included the velocity of
the fluid and the resulting effect on the motion of the vehicle in a space
environment.

This report is a preliminary analytical investigation of the problem of
pitch-motion variation of a vehicle due to the motion of the liquid fuel rela-
tive to the tank, under low inertial forces created by thrust and angular rota-
tation. The fuel is considered to be irrotational, incompressible 3 inviscid,
and contained in a rectangular tank. As a first step in the analysis, a
linearized expression for the sloshing frequency of a fluid free surface is
derived. The frequency is obtained by assuming small amplitude displacements
about a flat equilibrium free surface, an average angular rotation, and no vari-
ation in the amount of the fluid during thrust. The frequency is shownto be a
function of the acceleration loading, surface tension, and centrifugal force due
to angular rotation about the pitch axis of a tank containing a specified amount
of a given fluid. The equation of motion for the angular velocity of the
vehicle and fluid is then derived for motion started by an impulsive torque.
In general, the angular motion consists of a constant angular rotation with a
superimposed cosine variation with time. The possibility of minimizing the
disturbance due to sloshing by selecting the proper time of impulse application
as a function of the slosh frequency is investigated. Inasmuch as the time
required for such a maneuvercan be excessive for large tanks and low frequen-
cies, the use of this maneuver is limited.

In this report, the margin for stable motion of the liquid free surface is
shown. The variation of the slosh frequency is presented as a function of the
ratios of fluid massto tank massfor various initial tank capacities and dif-
ferent loading conditions. The response from rest to a unit impulsive torque
is shownfor a particular vehicle containing various amounts of liquid oxygen,
in different-size tanks, and under different loading conditions.

SYMBOLS

AN, CN,DN

a

dN, eN

EN

constants in general solution for _2_

tank-carried acceleration field due to thrust, ft/sec 2

coefficients of EN in equation (10)3 ft2/sec

time variation of _ for odd integer in equation (8)
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FN

Fb

f

fr

G

H

Ht

Hf

h

: h/R

I

If

It

i;j_k

K

L

mf

mt

N

Ni

NBo

Nce

n

time variation of _ for even integer in equation ($)

body force on fluid particle

constant defined by equation (21), slugs

tank fineness ratio_ L/R

constant defined by equation after equation (15), ft 2

total angular momentum_ H t + Hf_ slug-ft2/sec

tank angular momentum_ slug-ft2/sec

fluid angular momentum, slug-ft2/sec

height of equilibrium fluid free surface above tank base_ ft

total system inertia about y-axis_ slug-ft 2

moment of inertia of fluid about y-axis, slug-ft 2

moment of inertia of tank about y-axis_ slug-ft 2

unit vectors directed along x-_ y-_ and z-axes 3 respectively

mean curvature of free surface, i i + , ft-i

tank length_ ft

fluid mass_ slugs

inertial tank mass, It_2_ slugs

an integer in infinite summation for

impulsive torque_ ft-lb

Bond number, 0R2a/T

centrifuge number, pR3_2/T

unit normal to rigid boundary



P

Pi

Pv

Q

q

qt

R

R1,R2

r

S

S

t

t1

V

W

X,Y, Z

x, y, z

eTt

Y

A

fluid pressure, ib/sq ft

impulsive pressure, ib/sq ft

vapor pressure, lb/sq ft

constant defined by equation after equation (22)

velocity relative to inertial frame, ft/sec

fluid velocity relative to tank_ ft/sec

tank half-width_ ft

principal radii of curvature, ft

distance from origin to point in fluid (x 2 + y2 + z2)l/2, ft

fluid free surface

wetted surface of rigid tank wall

time

time of removal of impulse

tank velocity relative to inertial-axls system _ x _, ft/sec

thickness of tank, ft

inertial-axis system

tank-fixed axis system

ratio of residual fluid mass to inertial tank mass

ratio of initial full-tank fluid mass to tank mass

ratio of fluid to tank inertia, _ + fr 2 + +

impulse, slug-ft2/sec

incremental change

= _(x,t) small displacement from equilibrium surface

2 + + h_2 
J
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P

dN

T

¢

CJ3

COS

V

(1.()

Subscripts :

M

1

0

coefficient defined by equation (27b)

coefficient defined by equation (27a)

fluid density, slugs/cu ft

Nth mode fluid slosh frequency, radians/sec

fluid surface tension, lb/ft

velocity potential function, ft2/sec

phase angle in system motion, arc tan w_

body force potential

tank angular motion, radians/sec

average tank angular motion defined by equation (26), radians/sec

slosh coefficient defined by equation (27), radians/sec

vector operator_ 8-_ _y _-_

vector cross product

vector dot product

relative to fixed coordinate system

relative to moving coordinate system

relative to first mode

relative to conditions at time of last impulse

W at wall x = -r

Dots over symbols indicate derivatives with respect to time.

Arrows over symbols indicate vectors.

A prime denotes conditions prior to last impulse.

5



THEORY

Derivation of General Bernoulli Equation

As seen in figure i, the cross section of a rectangular tank with length

L, half-width R_ thickness W, and containing a fixed amount of an inviscid,

incompressible fluid rotates slowly about an inertial axis fixed in the base of

the tank. The origin of this axis coincides with the center of gravity of the

vehicle so that the inertial-axis system (X,Y,Z) and a tank-fixed coordinate

system (x,y,z) is formed, with the Y,y-axis being the axis of rotation. While

the tank rotates about this pitch axis_ the tank and fluid are subjected to an

acceleration field directed along the positive z-axis. This situation cor-

responds to a spacecraft thrusting while changing its spatial orientation.

Therefore, because of this longitudinal and centrifugal loading, the liquid is

positioned in the upper portion of the tank.

The equation of motion of an inviscid 3 incompressible fluid particle rela-

tive to the inertial system is

= + = Fb
dt F dt M e X q - _-

(i)

where the velocity of the particle is

q=_+

and where

% velocity vector of the fluid particle relative to tank

velocity vector of tank

p fluid pressure

D fluid density

-9

Fb body force

relative to the fixed coordinates

relative to the moving coordinates

The body forces are assumed to be derivable from a scalar potential as
follows:

--)

Fb = -V_
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Substituting for _ from equation (i) and taking the time derivative

gives

_t _t"

Since the fluid motion relative to the tank is considered irrotational_

where the velocity potential _ is a function of the spatial coordinates and

time. Also,

vx%:o

and

Therefore, by substitution,

_l _ "= _ _(_) +_x r _ 2_x _j_ +VV_ 9_ +_x (_x r-_ - (_

dt IF _t 2

v)gx r

By expanding the last two terms and substituting the acceleration into the gen-

eral equation of motionj the following pressure equation is obtained:

+ _----_. _ = -_X _ + _X_X %_ (2)
2 P

The problem is now restricted to the case where the motion is considered

to be in the X,Z plane and about the Y-axis. The following terms are assumed

to be negligible to allow a solution of _ by the separation of variables and

to simplify the analysis:

(i) v# • v_

(IT) _ x V_

(IrT) _X



Assumption (I) implies that IV_I is very small. The angular rate is

also considered small, but has an order of magnitude greater than IV_l.

theorder the   ens ono
are large, then assumption (II) implies that

or

Physically, this relationship means that the velocity of the particle considered

as fixed to the tank is much greater than the velocity of the particle relative

to the tank and that the centrifugal force on the particle is much greater than

the Coriolis force.

The implication from assumption (III) is that the rotational acceleration

is negligible and that there are no external forces acting on the particle

during the period to be analyzed. This assumption will also be used later in

obtaining an expression for the free-surface motion. With these assumptions

and relationships and by representing the body force in terms of the magnitude
of the carried vehicle acceleration field "a" due to thrust along the longi-

tudinal z-axis so that _ = -azj equation (2) is integrated to yield the general

Bernoulli pressure equation:

_ + r2co2 + az = P
_t 2 P

The term containing _2 represents the velocity squared of the particle. By

assuming that the fluid is at a distance from the tank base that is greater

than the tank half-width, the term can be linearized as follows:

m _ m

2 2

This approximation improves as the fineness ratio increases. Therefore, the

pressure equation maybe written as

z_ p
_ + + aZ

_t 2
(2a)

where the constant of integration is set equal to zero without loss of gen-

erality (ref. 2).
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Rigid-Wall Boundary Conditions

In order to determine the function _ in spatial coordinates, it is only

necessary to prescribe conditions along the boundaries. The function _ is

then determined completely throughout the fluid (ref. 3).

The following condition for the velocity of the particle evaluated at and

normal to the rigid walls must also hold:

which means for the tank under consideration

_x_ x=_ = 0

z=L

(3)

Equations (3) indicate that the only direction the particle can move at the

wall is parallel to the wall. The remaining boundary is along the free surface.

The free surface consists of small displacements about an equilibrium

configuration.

Free-Surface Conditions

In references 5 and 6 the contact angle, which is the intersection between

the liquid, gas, and rigid tank wa/_l, is shown to have a large influence on the

equilibrium free surface with a flat surface obtained for a lower range of

loading for a contact angle of 90 ° . In addition, the contact angle does not

change with the loading. Since the pressure due to the centrifugal force has

been idealized to be parallel to the _ vector, the free surface is assumed to

be flat throughout the range of loading. The free surface under these condi-

tions may be simply defined as

S = z - _ + Tl(x,t)] = 0 (4)

where h is the height of the equilibrium free surface and _(x,t) is a small

perturbation about the equilibrium surface. The height of the equilibrium free

surface is considered constant throughout the maneuvering.

With the fluid particles remaining at the surface, the boundary condition

for the free surface is (ref. 4)

DS
--_ 0

Dt

where DS/Dt is the total time derivative of S. By substituting _t = -_



-°
Substituting for S from equation (4) yields the following equation for the

free-surface boundary condition wlth the velocity component in the x-dlrection

considered negligible (ref. 3):

3q(x,t) = _ _ (5)

_t bz

Hereinafterj the displacement from the equilibrium surface q(x,t) Is deslg-

nated _.

In order to obtain the effect of the free-surface boundary condition on

the motion of the particle 3 equation (2a) Is utilized. Although the equilibrium

free surface is assumed to be unaffected by the surface tenslon3 the motion of

the fluid about the equilibrium position is affected. Subtracting the constant

vapor pressure of the fluid from both sides of equation (2a) leads to:

TK PvN+ z____÷az=--+-- (6)
2 p p

where

vK P - Pv

P P

and where

Pv

T

K

vapor pressure

surface tension

mean curvature of free surface_ _ +

R1,R 2 principal radii of curvature

Equation (6) is evaluated along the free surface as defined by equa-

tion (4). The exception to thls evaluation is that the function _ is eval-

uated along the equilibrium surface

z=h

This exception is due to (see ref. 7)

_(_)_ o
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By substituting the value for z from equation (4) into equation (6) and

neglecting the square of the displacement from the equilibrium surface since it

is small, the equation for the perturbed free surface is

+ (h2 + _)_2 + a(h+ _)--m + P--_
2 P P

(6a)

Taking the partial derivative of equation (6a) with respect to time and sub-

stituting the relationship for q from equation (5) yields

_ + 8K
_t 2

(7)

where the initial assumption _ _ 0 has been maintained.

The mean curvature for a two-dimensional surface is defined, at an instant

of time, as

82z/Sx2
K=

By substituting the value for z from equation (4) and neglecting the square

of the small displacement term_ the partial derivative with respect to time of

the mean curvature reduces to

_t 8x2_t 8x28z

Substituting this value for _K/_t into equation (7) yields the following

equation for the free-surface boundary condition:

o
_r.,2 P 8x28z

(7a)

Space-Coordinate Solution of Velocity Potential Function

Equation (6) presents the derived equation of motion for the free surface

of the fluid. Equations (7 a) and (3) give the boundary conditions along the

free surface and rigid walls, respectively. The velocity potential function

must satisfy these equations. Since the fluid is considered to be incompress-

ible and inviscid and the particle motion irrotational, the velocity potential

function must also satisfy Laplace's equation throughout the fluid:

ll



Utilizing separation of variables and applying the boundary conditions along the
rigid tank walls (eqs. (3)) yields a general solution for _:

N=l

+ DN cosh _)

Thus, the solution of _ depends upon whether N is odd or even; that is_

_ = I EN sin Nx--_xc°sh N_(L - z)+PAR 2R I

N_Odd N=Even

FN cos N____xcosh N_(L - z)
2R 2R

(8)

The constants EN and FN are functions of time and are the result of a com-

bination of the original constants in the general expression for _. Once

is solved in terms of space coordinates, the time dependency still remains to

be determined. In order to determine the nature of the time dependent function

in the expression for _3 equation (8) is substituted into equation (7a). This

substitution yields the following relationship for the Nth mode (when N is

odd):

An identical equation in terms of FN can be written for N is even. Thus,

the free surface has the characteristic of harmonic motion with the character-

istic slosh frequency for the Nth mode:

+a+ 2R"

The _ appearing in the expression for the frequency is considered as a con-

stant or average rotational rate throughout the period of free rotation. The

determination of _ is presented in a subsequent section of this paper.

The expression for the Nth slosh frequency is generalized by two loading

parameters, the centrifuge number Nce and the Bond number NBo , to yield

1" N_
_N = _INce + NBo +

L
tanh

N_ (fr2 - h)l 1/2
(9a)

12



where

fr fineness rati% L/R

h
h -- --

-- R

The centrifuge number is hereby defined as

and the Bond number is

NBo -

pR2a

The expression for oN
when

reveals that the free-surface motion becomes unstable

-NBo >Nce + (N_) 2

The solution for the stable harmonic motion is

EN = dN cos aNt + eN sin ant

A parallel solution can be obtained for FN.

(10)

Initial Conditions

In order to define the initial conditions (t = 0), an impulsive torque is

considered to be applied to the tank and fluid system to reorient the vehicle.

The magnitude of the force creating the impulsive torque is considered to be

large so that the centrifugal force due to the rotation and the linear thrusting

of the vehicle are neglected during the time of the impulsive torque. (See

ref. 8.) As shown in reference 7 the fluid in the tank resists the impulsive

torque through a system of pressures acting along the tank wall about the base

point. In the present analysis 3 the time integral of pressure is called the

impulsive pressure_ and the time integral of the impulsive torque is called the

impulse. 1

iFor correlation of terms used herein with those in reference 7_ the

impulsive torque is the couple in the term "force wrench." The time integral

of the impulsive torque is the impulse wrench.
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It is also shown in reference 7 that when the impulse

tl7 = lim Ni dt

tI _ to vo

(ll)

overcomes the impulsive pressures acting on the walls, there is a net change in

momentum of the tank and fluid system. The torque is idealized so that it

occurs only in the x-dlrection and applied therefore to the tank wall x = -R,

with the component over the top of the tank considered negligible. Even though

the torque cannot be represented by a scalar force potential because

vx o

it is maintained as an approximation of the physical situation. Therefore, for

the net change in momentum

- r X n(Pi)dz = Zi_ (12)

where

--)
n unit vector normal to and outward from fluid

Pi impulsive pressure along wall x = -R

AH change in angular momentum of system

The sudden motion of the walls due to the impulsive torque is considered

as a series of pistons applied to the fluid surface x = -R with a force pro-

portional to _ and z in a manner analogous to the procedure in reference 3.

The total integral of these pistons over the wall is then equivalent to the

moment acting on the fluid.

The total rate of change across the boundary x = -R may be approximated

by an average or constant force on the boundary. However, since the magnitude

of the impulse distribution cannot really be determined, the total effect on

the fluid motion over the entire wall must be used. Thus, a correlation is

obtained between the total impulsive torque and the resisting moment due to the

system of impulsive pressures. When dealing in terms of the total flux across

the boundary, there is no difference in the effect regardless of how the pres-

sure is assumed to be distributed. The pressure at a point along the wall due

to the impulsive torque is

PW = 2pRz_

For the time of the impulsive-torque application, the pressure equation
can be written as

14



8t
x=-R

z_2 p +
+-- + az -

2 O

Integrating this equation over the small interval of time of the impulsive-

torque application, with the value of PW much greater than the static pres-

sure existing prior to impulse, gives

- _o = 2Rz Zko = Pi (13)

where _o is the velocity potential function just prior to the impulsive

torque. In order to find the cumulative effect of tNe impulse, the moments due

to the impulsive pressures are integrated over the wetted tank surface x = -R

with the lower limit of integration taken at the undisturbed surface:

Ss ,oiI sr x _ - ds = _ x z_z _,,)_s
x---R

t=O

(l_)

where

ds = dy dz

By substituting into equation (14) the value for

integratingj the following expression for the amplitude

t = 0 when only the first mode (N = l) is considered:

from equation (8) and

dI is obtained at

dI = -G Z_o + E1 ' (15)

where

_2(L3 - h3)
G=

6R_°sh _(L'_ h) + _h sinh _(L - h)l_2_R 2_R

The value of E1 ' can be determined by the fluid conditions of velocity and

surface displacement in the cycle prior to the impulse. Now, there are two

unknowns, Zko in equation (15) and eN for N = 1 in equation (10). How-

ever, eI is readily determined from the displacement of the free surface at

t = 0 by assuming that there is no change in spatial coordinates during the

impulsive torque. The free-surface displacement is

t=O t=t o

15



where q'| is the displacement existing at the initial time of impulsive-

=to

torque application. The relationship in equation (5) is utilized to obtain the

value of _ at t = 0 from the previous potential function_ which is assumed

to have the same spatlalboundary and loading conditions:

i ft 8_o
q = - ___ dt

t=O t:t o
z=h

_Idl 'sin al'to- el'c°s gl'tO)_i n _X slnh _(L._ h)._
2R_ I , 2R

Solving for eI gives

ql _ , ql,t ° el,co s el,to )eI
= - _\l_l, sin -

(16)

The velocity potential function may therefore be written in terms of Zko and

the conditions at the time previous to the last impulse as follows:

= -G _c0 + EI')COS O1t - dl'sin °l'to - el'c°s of'to) sin _i sin _x cosh _(L - z)
2R 2R

(17)

In order to obtaln Zko in terms of the known impulse _, equation (12) is

utilized. The change in angular momentum of the system is

--) -@

= It 2_ + 2_f

where It is the vehicle yaw moment of inertia considered as being that of the

tank and 2_f is the change in angular momentum of the fluid, that is 3

-w/2 R ?x xY-v dz, 
(18)

where W is the thickness of the tank.

The total fluid momentum is obtained by integrating equation (18). The

first term in the integrand is integrated:

P d_W/2 R _X Z_X _dz dx dy = _ R 2 + L2 + hL + h2 Zkn
(19)

where mf is the total fluid mass and is equal to 2pR(L - h)W.
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The second term in the integrand of equation (18) shows the change in

momentum relative to the tank created by the pressure applied at the wall

X = -R:

t_ _ t _o_h _ 2-_ 2R -

Substituting for dI from equation (15)

AHf = (If + fG)Zko

where If is the moment of inertia of fluid about the y-axis with the fluid

considered as a rigid body_ that is_ If = --_(R 2 + L 2 + hL + h 2), and

(21)

Substituting these relationships and equation (13) into equation (12) yields

= _ (22)

ItQ

where

.F _2"It(fr - h) =3_th ---2-_(fr - h ) 1

15cosh : + :-
Q = 1 + _ + _/ _(f_. - hi _t_ _t'(f-,,.. - hi

/cosh "_ " --" + _--:-sinh ', "" --,'- 1
L 2 2 2

= It 3

mf

mt

It
m

mt R2

_=_\r +

17



By substituting equation (22) into equation (17), the velocity potential

function is found as a function of the impulse:

¢ = _ G_+ E1 ' cos dlt - -- l'81n dl'to - el'cos al'to sin _i sin nx cosh _(L z) (23)
ItQ _i' 2R 2R

General Equation of Motion

After removal of the impulsive torque, the tank fluid system rotates

without any additional external forces so that the system angular momentum is

constant. The angular momentum after the impulse is therefore

H = I_ - f(d I cos gl t + eI sin _it)

where dI and eI are obtained from equations (15) and (16) and

I = It + If

t = O, the angular momentum is found in terms of the motionWhen evaluated at

to be

where _+

a_ from equation (22) gives

H = I_+ - fd 1

is the angular velocity at the end of the impulse.

= I-Z-+ I_o - fal
ItQ

Equating this formula to the angular momentum at any time

and solving for the angular motion of the system leads to

Substituting for

t after the impulse

)= _ + _o - - cos glt + -- sin glt
ItQ I

(24)

The angular motion consists of a constant _, which is used to compute the

slosh frequency in equation (9), and a superimposed cosine variation with time

that is due to sloshing:

(25)_o = _ - _ cos glt - V sin gl t = _- _s c°s(dlt - _)

18



where

and

-- 7

ItQ

= arc tan v_

Also, the slosh coefficient is

u s (_2 + v2) I/2: (27)

where

): - -i-= ggta - El' (27a)

and

:LPl:d )]V ILGI ,_ l'sin dl't o - el'cos (_l'tO (27b)

In a system started from rest where E 1 ' = 0 and w = 0, equation (26)

can be written as

ItQ

and equations (27) can be written as

_os = _ cos (_it

Therefore 3 equation (25) becomes

+ _(1 - cos glt) (28)
= it Q

DISCUSSION AND HJ_BULTS

From the expression for the slosh frequency given by equation (9a), a

stabilltymargin for the free surface is revealed. For example, if the thrust

of the vehicle is reversed in direction and is of sufficient magnitude so that

19



_2

-NBO Nce +

then the motion of the free surface is unstable. Therefore, for a large tank

a small thrust reversal can create instability. When the Bond number Is in

this region, the net force on the liquid would force it toward the base of the

tank and cause a perturbation of the vehicle motion. This result suggests a

limit on the magnitude of retrograde thrust on the vehicle. The limit may be

exceeded to some degree if the force of impact and resulting perturbation are

within a tolerance for acceptable control.

The slosh frequency during a cycle for a given fluid is found to be a

function of the height of the flat equilibrium free surface of the liquid,

centrifuge number, Bond number, and tank capacity. In figure 2, the product of

slosh frequency GI and tank radius R 3/2 for liquid oxygen with

= 4.1 × 10 -4 ft3/sec 2 is plotted against the product of fineness ratio frT
P

and the ratio of residual fuel mass ratio _ to initial full-tank fuel mass

ratio raft for various centrifuge numbers and Bond numbers. As the value of

the product fr _ decreases below approximately 1.5 (corresponding to a

fluid depth of 1.5 tank half-wldths), the value of the slosh-frequency param-
!

eter _lR3/2 decreases rapidly for a given tank. The rate of decrease is

greater for a high Bond number at the same centrifuge number. The decrease is

attributable to the increased effect of the tank top on the wave motion as h

increases as the fuel is consumed. The values of the frequency parameter show

that for a tank with diameter of 2 to lO feet, a full period can take up to
20 minutes.

For maneuvers requiring short time intervals between impulse applications,

the vehicle motion would be similar to a rigid body response with a slight

variation due to surface displacement:

7

= it Q +_o - v_it

However, after repeated impulses, the coefficient v can increase to the point

where it may become uncontrollable.

In order to minimize the sloshing# each of the components in equation (27)

must be minimized separately. Examination of equations (27a) and (2To) shows

that exact knowledge is required of surface velocities and displacements in

order to adjust correctly the last impulse for zero sloshing.

The requirements can be simplified by applying the impulses at a time cor-

responding to zero surface displacement. As an illustration, consider a system
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started in motion from rest by an impulse with another impulse to be applied
at somelater time in order to achieve someunperturbed angular rate. The com-
ponents in equation (27) after the second impulse are therefore

f
= - Gf 7_\ + 7o cos _l'to_"j

I ItQ

f _i G

I _I' ItQ 7° sin _l'to

One way to minimize the coefficients _ and v is to divide the required

impulses into two equal parts with the same sign and applied at a time cor-

responding to

Another procedure is to apply two impulses_ equal and opposite in sign_ at a

time corresponding to

However 3 such impulses call for great periods of time. During this time it

could be expected that the viscosity_ which has been neglected in this analysis,

would damp out the sloshing effect.

An alternative to these aforementioned procedures for minimizing the

sloshing is to use a two-impulse system with the initial impulse greater than

required for a desired angular rate. At some later time a second impulse is

applied in retrograde fashion relative to the initial impulse and with a lesser

magnitude. The second impulse must be adjusted in magnitude and applied at a
time

arc cos -_-

t= 7o

_l'

so that the final average angular rate is the desired rate and the coefficient

is zero. Howeverj a sloshing coefficient remains due to the displacement of

the free surface at the time of the last impulse. Therefore, limitations are

imposed on this system to achieve a reduction in the sloshing coefficient by

using an initial overshoot maneuver. The first restriction is the following

relationship between the desired angular rate and the initial angular rate:

_o (1 - cos ql'to) = _d

where _d is the desired average angular rate of the tank.
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In order to have a reduced sloshing through this initial overshoot maneu-
ver_ the following restriction on the initial ar_ular rate must. hold

> ---

Thus, for times close after the initial impulse or for times close to a quarter_

cycl% the qualification on _o becomes impractical due to the fact that _o

would have to approach infinity. In figure 3 an example of this restriction is

plotted for a tank with a fineness ratio of 2 and a radius of It feet and bei1_

one-half full of liquid oxygen. If _o falls above the hatched area for a

given angle of _l'to and satisfies the condition given by equation (29) _ a

reduction in sloshing can be obtained.

The response to an impulse is now investigated for a system initially at

rest. A specific example of the angular response of a fluid tank system started

from rest by an impulsive torque is presented in figure 4. The tank is con-

sidered to be one-half full of liquid oxygen and to have a pitching moment of

inertia of 720 slug-feet2; a half-width of i_ feet_ a fineness ratio of 2_ and

an imposed acceleration field "a" due to thrust of 5.15 x 10-5 ft/sec 2. Th_

impulse is of sufficient magnitude to produce an average angular velocity

of 0.0025 radian/se% a slosh coefficient _s of 0.O014 radian/se% and a

of 0.0011 radian/sec which is the initial angular velocity of the system

since the tank is started from rest. These responses are normalized with

respect to the impulse and are plotted against the ratio _ (fluid mass to tank

mass) for different tank fineness ratios fr and different values of the ratio

_ft (full-tank fluid mass to tank inertial mass). The vehicle considered has

a pitching moment of inertia of 720 slug-feet 2. The curves in all the responses

are not carried out to the full-tank values because the theory calls for a free

surface at all time% which cannot be achieved with a fmll tank.

In figure 5 the change in angular velocity per unit impulse as calculated

from equation (22) is shown. For fineness ratios of 3 and 4 the response

remains approximately constant as _ decreases until values of about 0.2 are

reachedj at which time there is a rapid increase converging to the rigid-body

response of the vehicle. Smaller values of fineness ratio produce a larger

response for all tanks and a more gradual increase with decreasing amounts of

available fuel. For tanks with lesser capacities_ the responses are greater at

the same value of _. Thus 3 for a tank with a fineness ratio of i_ the

increase in response with decreasing _ resembles an exponential curve] wherea%

for a fineness ratio of 4j the response remains approximately constant until

the previously mentioned value of _ of about 0.2 is reached.

In figure 6 the average angular velocity is shown as computed from equa-

tion (26). The response is similar to the change in angular velocity shown in

figure 5j except for the addition of the slosh coefficient. The convergence to

a rigid-body response as the tank empties is more gradual for tanks with small
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capacities. For any tank capacity, the smaller fineness ratios have a more
gradual convergence to a rigid-body response.

The slosh coefficient per unit impulse is shownin figure 7 as computed
from equation (27). For values of aTt of 1.25 and 1.O0, the maximumvalues
of _s/_ remain approximately the same, with the peak values occurring at
smaller values of _ for larger fineness ratios. In general, the values for
a tank capacity of 1.25 and 1.O0 increase for decreasing fineness ratios. Also,
as the tank capacities decrease, the general range of values becomesgreater.
However, as the tank empties there is a crossover point where the values for
the larger fineness ratios becomelarger than the values for the smaller fine-
ness ratios. As the tank capacities decrease_ the crossover point occurs at
increasingly larger values of _ untilj as shownin figure 7(d), with
_ft = 0.50 the values of (Os/_ for a fineness ratio of 2 are greater over the
entire range than for a fineness ratio of 1. It should be noted that the
results are not applicable whenthe fluid level nears the top of the tank
because the pressure over the top of the tank has been assumedto be negligible
in the discussion of initial conditions.

In figure 8, the slosh coefficient per average angular velocity _s/_ is

plotted against _. This figure shows that the larger the fineness ratio and
the larger the tank capacity, the greater is the ratio of slosh coefficient to
angular velocity. The ratio decreases slowly as the fluid level in the tank
decreases until values of _ of about 0.25_ft are reached. At this time, the
decrease becomesfaster and converges to the condition of an empty tank and
rlgid-body response.

CONCLUSIONS

The equation of motion has been derived for the two-dimensional angular
rotation of a vehicle containing a large amountof an irrotational, incompress-
ible, and inviscid liquid fuel with a flat equilibrium free surface contained
in a rectangular tank. The derivation includes a determination of a velocity
potential function and frequency of free-surface oscillation generated by an
impulsive torque. Analysis of these equations reveals the following
conclusions:

1. The free-surface motion of a given liquid is a stable oscillation until
a negative inertial loading factor due to a thrust reversal exceeds the sumof

_2
a centrifugal-force loading factor and _-. Under these conditions this free-
surface motion diverges. For large tanks, only small thrust reversals are
required to create this divergence.

2. The frequency of the free-surface motion for a given liquid in a given-
size tank under constant inertial loading remains approximately constant until
the depth of the fluid in the tank reaches approximately 1.5 tank half-widths.
At this time there is a rapid convergence to zero.
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3. The vehicle angular motion can be described as a constant average

angular velocity with a superimposed cosine variation with time whose amplitude

or slosh coefficient is a function of the amount of fluid in the tank, the

magnitude of the applied impulse, and the time of its application in the cycle

previous to the applied impulse. The change in the angular velocity during the

time of the impulsive torque is a function of the last impulse, with the

resulting angular velocity being the initial angular velocity of the new cycle.

4. The effect of sloshing on the angular motion of the vehicle can be

minimized by utilizing two equal impulses with the second impulse applied out

of phase with the sloshing so as to cancel the angular momentum of the fluid.

A diss_vantage to this method is that large periods of time are required between

impulses. Another method is to utilize two impulses that are not equal in mag-

nitude or sign and applied at shorter intervals of time. This method can pos-

sibly reduce the sloshing effect to within tolerable limits.

5. The change in angular velocity and average angular velocity due to an

impulse are greater for small fineness ratios, with a gradual increase in the

response as the tank empties until there is a small amount of fluid remaining

in the tank. Below these amounts of fluid there is a rapid convergence to the

rigld-body response of the vehicle.

6. In general, the values of the slosh coefficient are greater for smaller

fineness ratios for given amounts of remaining fluid. These values also

increase with decreasing values of the ratio of initial fuel mass to vehicle

mass. As the tank empties, maximum values of slosh coefficient are reached

that are about the same for all fineness ratios, with these maximum values

occurring at larger values of remaining fluid for smaller values of fineness

ratio. Below these amounts of remaining fluid 2 the slosh coefficient decreases

toward zero with the rate of decrease greater for larger values of fineness

ratio.

7- The ratio of slosh variation to average angular velocity is greater for

large fineness ratios and for larger initial tank capacities. As the tank

empties, there is a gradual decrease in this ratio; however, when a low amount

of fluid remains, there is a rapid convergence to zero.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Station, Hampton, Va., March 5, 1964.
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(a) _ft = 1.29.

Figure 8.- Slosh coefficient per average angular velocity plotted against ratio of fluid mass to

tank mass for various fineness ratios and at different values of oTt (the ratio of full-

tank fluid mass to tank inertial mass).
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